The n-Width of the Unit Ball of H^{q}

S. D. Fisher* and M. I. Stessin
Department of Mathematics, Northwestem University, Evanston, Illinois 60208

Communicated by Allan Pinkus
Received December 10, 1990

Abstract

Let \mathbf{E} be a compact subset of the open unit disc Δ and let H^{q} be the Hardy space of analytic functions f on Δ for which $|f|^{q}$ has a harmonic majorant. We determine the value of the Kolmogorov, Gelfand, and linear n-widths in $L^{p}(\mathbf{E}, \mu)$ of the restriction to \mathbf{E} of the unit ball of H^{q} when $p \leqslant q$ or when $1 \leqslant q<p<\infty$ and \mathbf{E} is "small." © 1991 Academic Press, Inc.

Introduction

Let Δ be the open unit disc in the complex plane, \mathbf{E} a compact subset of Δ, and μ a positive measure on \mathbf{E}. In this paper we establish the precise value of the n-width of the unit ball of the Hardy space H^{q} in the space $L^{p}(\mathbf{E}, \mu)$ in the case when $1 \leqslant p \leqslant q \leqslant \infty$ and in certain cases when $1 \leqslant q<p \leqslant \infty$. These results extend results of Fisher and Micchelli for the cases $q=\infty, 1 \leqslant p \leqslant \infty$, and $p=q=2$ (see [FM1; FM2], respectively). When $p \leqslant q, \mathbf{E}$ is the circle $\{z:|z|=r\}$, and μ is restricted to a special class of measures, the value of the width was obtained by O. G. Parfenov [Pa].

In Section 1 we establish our notation, give all the requisite definitions, and state and prove the main theorem. We conclude in Section 2 with several results concerning the more difficult case when $1 \leqslant q<p \leqslant \infty$.

Section 1

Let X be a Banach space and \mathbf{A} a (convex, compact, centrally symmetric) subset of X.

The Kolmogorov n-width of \mathbf{A} in X is defined by

$$
d_{n}(\mathbf{A}, X):=\inf _{X_{n}} \sup _{f \in \mathbf{A}} \inf _{g \in X_{n}}\|f-g\|,
$$

where X_{n} runs over all n dimensional subspaces of X.

[^0]The Gel'fand n-width of \mathbf{A} in X is defined by

$$
d^{n}(\mathbf{A}, X):=\inf _{L^{n}} \sup _{x \in L^{n} \cap \mathbf{A}}\|x\|
$$

where L^{n} runs over all subspaces of codimension n.
The linear n-width of \mathbf{A} in X is defined by

$$
\delta_{n}(\mathbf{A}, X):=\inf _{T_{n}} \sup _{f \in \mathbf{A}}\left\|f-T_{n} f\right\|
$$

where T_{n} varies over all linear operators of rank n which map X into itself.
Much information on n-widths is in the book by A. Pinkus [Pi].
We shall take \mathbf{A} to be the restriction to the compact set \mathbf{E} of the closed unit ball A_{q} of the Hardy space H^{q}. We say that sampling is optimal for A_{q} if there are points z_{1}, \ldots, z_{n} in A, L^{p} functions c_{1}, \ldots, c_{n} on \mathbf{E}, and a linear operator T_{n} of the form

$$
\left(T_{n} f\right)(z)=\sum_{k=1}^{n} c_{k}(z) f\left(z_{k}\right), \quad f \in H^{q}
$$

such that

$$
\delta_{n}\left(\mathbf{A}_{q}, L^{p}\right)=\sup _{f \in A_{q}}\left\|f-T_{n} f\right\|_{L^{p}}
$$

(Repetitions among the points z_{1}, \ldots, z_{n} are allowed with the usual understanding that if z_{i} is repeated k times, the values of f at z_{i} are the consecutive derivatives of f at z_{i} of order zero through $k-1$.)

The values of the n-widths are expressed in terms of Blaschke products. A Blaschke product of degree n is an analytic function B on A of the form

$$
B(z)=\lambda \prod_{j=1}^{n}\left(z-a_{j}\right) /\left(1-\bar{a}_{j} z\right), \quad a_{1}, \ldots, a_{n} \in \Delta, \quad|\lambda|=1
$$

We denote the collection of all Blaschke products of degree n or less by \mathfrak{B}_{n}.
The proof of our main theorem depends in an essential way on the following extremal problem: for $1 \leqslant p, q<\infty$, and a measure μ on \mathbf{E} define

$$
\begin{equation*}
\delta(p, q ; \mu):=\sup \left\{\|g\|_{L^{p}(\mathbf{E}, \mu)} /\|g\|_{H^{q}}: g \in H^{q}\right\} \tag{1}
\end{equation*}
$$

It is evident that solutions to (1) exist and that any solution is an outer function (division by a nonconstant inner factor would not affect the H^{q} norm while strictly increasing the $L^{p}(\mathbf{E}, \mu)$ norm). We shall call a solution g of (1) normalized if g has H^{q} norm one and is positive at the origin.

Proposition 1. Let g be a normalized solution of (1). Then

$$
\begin{equation*}
\delta^{P}\left|g\left(e^{i \theta}\right)\right|^{q}=\int_{E}|g(w)|^{p} P\left(e^{i \theta} ; w\right) d \mu(w) \tag{2}
\end{equation*}
$$

for all θ, where $P\left(e^{i \theta} ; w\right)$ is the Poisson kernel for w at $e^{i \theta}$ and δ is short for $\delta(p, q ; \mu)$.

Proof. Let v be a real harmonic function on Δ which is continuous on the closed unit disc and ε a small positive or negative number. Then

$$
\delta\left\{\int_{T}|g|^{q} e^{\varepsilon q v} d \theta\right\}^{1 / q} \geqslant\left\{\int_{E}|g|^{p} e^{\varepsilon p v} d \mu\right\}^{1 / p}
$$

where T is the unit circle $\left\{e^{i \theta}: 0 \leqslant \theta \leqslant 2 \pi\right\}$. After expanding the exponential terms and using the binomial theorem and the fact that g is a normalized solution to (1), we obtain

$$
\begin{aligned}
& \delta^{p} \int_{T}\left|g\left(e^{i \theta}\right)\right|^{q} v\left(e^{i \theta}\right) d \theta \\
&=\int_{E}|g(w)|^{p} v(w) d \mu(w) \\
&=\int_{E}|g(w)|^{p} \int_{T} v\left(e^{i \theta}\right) P\left(e^{i \theta} ; w\right) d \theta d \mu(w) \\
& \quad=\int_{T} v\left(e^{i \theta}\right) \int_{E}|g(w)|^{p} P\left(e^{i \theta} ; w\right) d \mu(w) d \theta
\end{aligned}
$$

Since v is an arbitrary continuous function on T, this gives (2).
We shall be able to give the n-width in the case when $p \leqslant q$ or when $p>q$ and \mathbf{E} is sufficiently "small" in the following sense.

Definition. The hyperbolic radius of a compact set \mathbf{E} in the unit disc Δ is the infimum of all those numbers r such that there is a conformal mapping Φ of Δ onto Δ such that $\Phi(\mathbf{E})$ lies inside a circle of radius r centered at the origin.

Proposition 2. Suppose that $1 \leqslant p \leqslant q<\infty$; then there is but one normalized solution of (1). Moreover, the same conclusion holds if $1 \leqslant q<p<\infty$ provided that the hyperbolic radius r_{0} of \mathbf{E} satisfies

$$
\arctan \left(2 r_{0} /\left(1-r_{0}^{2}\right)\right)<q \pi / 2 p
$$

Proof. Let g_{1} and g_{2} be two normalized solutions of (1). Then

$$
\begin{aligned}
& \left|g_{1}\left(e^{i \theta}\right) / g_{2}\left(e^{i \theta}\right)\right|^{q} \\
& \quad=\int_{E}\left|g_{1}(w) / g_{2}(w)\right|^{p}\left|g_{2}(w)\right|^{p} P\left(e^{i \theta} ; w\right) d \mu(w) / \int_{E}\left|g_{2}(w)\right|^{p} P\left(e^{i \theta} ; w\right) d \mu(w) .
\end{aligned}
$$

The measure $d \beta(w)=\left|g_{2}(w)\right|^{p} P\left(e^{i \theta} ; w\right) d \mu(w) / \int_{E}\left|g_{2}(w)\right|^{p} P\left(e^{i \theta} ; w\right) d \mu(w)$ is a probability measure so the above equality gives (for each θ)

$$
\begin{equation*}
\left|g_{1}\left(e^{i \theta}\right) / g_{2}\left(e^{i \theta}\right)\right|^{q} \leqslant \sup _{w \in E}\left|g_{1}(w) / g_{2}(w)\right|^{p} \tag{3}
\end{equation*}
$$

Since g_{1} and g_{2} are any two normalized solutions, (3) holds with the roles of g_{1} and g_{2} interchanged. Moreover, $g_{1} / g_{2}=\exp (u+i v)$, so that (3), and its counterpart with g_{1} and g_{2} interchanged, can be rephrased as

$$
\sup _{T} u\left(e^{i \theta}\right) \leqslant\{p / q\} \sup u(w)
$$

and

$$
-\inf _{T} u\left(e^{i \theta}\right) \leqslant-\{p / q\} \inf _{w \in E} u(w) .
$$

When we add these two inequalities we obtain

$$
\begin{equation*}
\sup _{T} u\left(e^{i \theta}\right)-\inf _{T} u\left(e^{i \theta}\right) \leqslant\{p / q\}\left\{\sup _{w \in E} u(w)-\inf _{w \in E} u(w)\right\} . \tag{4}
\end{equation*}
$$

If $q \geqslant p$, this clearly implies (by the maximum principle) that u is a constant; that is, g_{1} is a constant multiple of g_{2}. This constant must be 1 since g_{1} and g_{2} are both normalized.

If $q<p$, then we have to work a little harder. Assume that u is not identicaly constant. Adding a constant to u and then multiplying by a positive scalar clearly does not change (4). Hence, we may suppose that $-1 \leqslant u \leqslant 1$ on T and that the left-hand side of (4) is equal to 2 . The following lemma is now needed.

Lemma. Suppose that u is a real-valued harmonic function on Δ satisfying $-1 \leqslant u \leqslant 1$. If the hyperbolic radius of \mathbf{E} is r, then

$$
\sup _{w, \zeta \in \mathbf{E}}\{u(w)-u(\zeta)\} \leqslant(4 / \pi) \arctan \left(2 r /\left(1-r^{2}\right)\right)
$$

Proof. Clearly the problem is conformally invariant, so there is no loss in assuming that \mathbf{E} lies within the disc of radius r centered at the origin. We shall use the maximum principle and the Poisson integral formula for u :

$$
\begin{aligned}
\sup _{w, \zeta \in E} & \{u(\zeta)-u(w)\} \leqslant \sup \{u(\zeta)-u(w):|\zeta|=|w|=r\} \\
& \leqslant \sup \left\{(1 / 2 \pi) \int\left|P\left(e^{i \theta} ; \zeta\right)-P\left(e^{i \theta} ; w\right)\right| d \theta:|\zeta|=|w|=r\right\} \\
& =(1 / 2 \pi) \int\left|P\left(e^{i \theta} ; r\right)-P\left(e^{i \theta} ;-r\right)\right| d \theta \\
& =(4 / \pi) \arctan \left(2 r /\left(1-r^{2}\right)\right)
\end{aligned}
$$

This concludes the proof of the lemma.
We apply the conclusion of the lemma to (4). Thus, if $\arctan \left(2 r /\left(1-r^{2}\right)\right)<\pi q / 2 p$, then once again we obtain a contradiction. This establishes that u is identically constant and hence that $g_{1}=g_{2}$. The proof of uniqueness is complete.

Our main result is this.

Theorem 1. Suppose that $1 \leqslant p \leqslant q<\infty$ or that the hyperbolic radius r_{0} of E satisfies

$$
\arctan \left(2 r_{0} /\left(1-r_{0}^{2}\right)\right)<\pi q / 2 p
$$

Then

$$
\begin{equation*}
d_{n}\left(A_{q}, L^{p}\right)=d^{n}\left(A_{q}, L^{p}\right)=\delta_{n}\left(A_{q}, L^{p}\right)=\inf _{B \in \mathfrak{B}_{n}} \sup _{g \in A_{q}}\|g B\|_{L^{p}} \tag{5}
\end{equation*}
$$

Moreover, sampling is optimal for A_{q}.
Proof. There is an odd continuous mapping σ of the sphere $S^{2 n+1}$ into \mathscr{B}_{n}. This mapping was first used in $[F M]$ and is simple to define: let z_{0}, \ldots, z_{n} be $n+1$ distinct points of A; for each $n+1$-tuple $w=\left(w_{0}, \ldots, w_{n}\right)$ of complex numbers whose moduli sum to 1 , the Pick-Nevalinna theorem guarantees that there is a unique positive scalar ρ and a unique Blaschke product B of degree at most n with $\rho B\left(z_{j}\right)=w_{j}, j=0, \ldots, n$. (A proof of the Pick-Nevalinna theorem can be found, for instance, in [F].) The map σ is then defined by $\sigma(w)=B$.

We now use the map σ and Proposition 2 to establish the lower bound. For each Blaschke product B of degree n or less, let g_{B} be the unique normalized solution of (1) with respect to the measure $|B|^{p} d \mu$. Let τ be the mapping from the sphere $S^{2 n+1}$ into A_{q} defined by

$$
\tau(\mathbf{x})=\sigma(\mathbf{x}) g_{\sigma(\mathbf{x})}, \quad \mathbf{x} \in S^{2 n+1}
$$

Then τ is an odd mapping from the sphere $S^{2 n+1}$ into A_{q}; further, τ is continuous into the weak topology on H^{q}. In particular, the mapping τ is continuous from $S^{2 n+1}$ into $L^{p}(E, \mu)$.

We now apply standard arguments involving Borsuk's theorem to prove that

$$
d^{n}\left(A_{q}, L^{p}\right), d_{n}\left(A_{q}, L^{p}\right) \geqslant \inf _{B \in \mathfrak{B}_{n}} \sup _{g \in A_{q}}\|g B\|_{L^{p}} .
$$

To obtain the lower bound for the Gel'fand n-width, let l_{1}, \ldots, l_{n} be n continuous linear functionals on L^{p}. The mapping $\mathbf{x} \mapsto\left\{l_{j}(\tau(\mathbf{x}))\right\}$ is continuous and odd from $S^{2 n+1}$ into C^{n}. From Borsuk's theorem we conclude that this map has a zero; that is, that there is a $B \in \mathfrak{B}_{n}$ such that $l_{j}\left(B g_{B}\right)=0$, $j=1, \ldots, n$. Hence,

$$
\sup \left\{\|f\|: l_{j}(f)=0 \text { and } f \in A_{q}\right\} \geqslant\left\|B g_{B}\right\| \geqslant \inf _{B \in \mathfrak{B}_{n}} \sup _{g \in A_{q}}\|g B\|_{L^{p}}
$$

When we minimize over all choices of l_{1}, \ldots, l_{n} we obtain the desired lower bound for the Gel'fand width. The lower bound for the Kolmogorov width is established in this way. Let X_{n} be any n dimensional subspace of $L^{p}(\mathbf{E}, \mu)$ and let y_{1}, \ldots, y_{n} be a basis for X_{n}. We shall assume that $p>1$; the case $p=1$ follows by a limit argument. Each function $f \in A_{q}$ has a unique best approximation from X_{n} and this best approximation varies continuously with f. In particular, this is true of the functions $\tau(\mathbf{x})$ as \mathbf{x} varies over $S^{2 n+1}$. Let the best approximation to $\tau(\mathbf{x})$ be $\sum c_{j}(\mathbf{x}) y_{j}$. The n-tuple $\left\{c_{j}(\mathbf{x})\right\}$ is a continuous, odd function of \mathbf{x} and hence by Brosuk's theorem, there is a choice of \mathbf{x} which makes all the c_{j} simultaneously equal to zero. That is, there is a Blaschke product B_{0} such that the best approximation to $B_{0} g_{B_{0}}$ from X_{n} is zero. This then gives

$$
\sup _{f \in A_{q}} \inf _{h \in X_{n}}\|f-h\| \geqslant \inf _{h \in X_{n}}\left\|B_{0} g_{B_{0}}-h\right\|=\left\|B_{0} g_{B_{0}}\right\| \geqslant \inf _{B \in \mathscr{B}_{n}}\left\|B g_{B}\right\| .
$$

This is the lower bound for the Kolmogorov n-width.
We shall next establish (for all p and q) the upper bound

$$
\begin{equation*}
\delta_{n}\left(A_{q}, L^{p}\right) \leqslant \inf _{B \in \mathfrak{B}_{n}} \sup _{g \in \mathcal{A}_{q}}\|g B\|_{L^{p}} . \tag{6}
\end{equation*}
$$

This will complete the proof of Theorem 1 since δ_{n} exceeds both d^{n} and d_{n} (see $[\mathrm{Pi}]$). To see (6) we shall use Theorem 3 of [MR]. Let B be any Blaschke product of degree n with zeros at z_{1}, \ldots, z_{n}. Using the notation of [MR], let $X=H^{q}, K=A_{q}, Z=L^{p}(E, \mu), U f=$ the restriction of f to the compact set $\mathbf{E}, Y=C^{n}$, and $I(f)=\left(f\left(z_{1}\right), \ldots, f\left(z_{n}\right)\right)$. Let G be defined by

$$
G\left(a_{1}, \ldots, a_{n}\right)(z)=\sum_{k=1}^{n} a_{k} B_{k}(z), \quad\left(a_{1}, \ldots, a_{n}\right) \in C^{n}
$$

where B_{k} is a constant multiple of the Blaschke product with zeros at z_{j}, $j \neq k$, the constant being chosen so that $B_{k}\left(z_{k}\right)=1$. According to Theorem 3 of [MR],

$$
\begin{gathered}
\sup \left\{\|f\|_{L^{p}}: f \in A_{q} \text { and } f\left(z_{k}\right)=0, k=1, \ldots, n\right\} \\
=\inf _{A} \sup \left\{\|f-A(I(f))\|: f \in A_{q}\right\},
\end{gathered}
$$

where A ranges over all transformations from C^{n} into $L^{p}(E, \mu)$. Moreover, G is an optimal algorithm; that is,

$$
\begin{gather*}
\sup \left\{\|f\|_{L^{\prime}}: f \in A_{q} \text { and } f\left(z_{k}\right)=0, k=1, \ldots, n\right\} \\
=\sup \left\{\|f-G(I(f))\|: f \in A_{q}\right\} . \tag{7}
\end{gather*}
$$

The left-hand side of (7) is exactly

$$
\sup \left\{\|B g\|: g \in A_{q}\right\}
$$

while the right-hand side of (7) is surely at least as large as the linear n-width of A_{q} in $L^{p}(E, \mu)$. We may now take the infimum over all Blaschke products of degree n to obtain the desired inequality.

Example 1. We use Theorem 1 to determine the n-width of A_{q} in L^{p} when E is the circle $|z|=r, d \mu=d \theta$, and $q \geqslant p$ or $\arctan \left(2 r /\left(1-r^{2}\right)\right)<$ $\pi q / 2 p$. In (5) take $B(z)=z^{n}$; we know that the normalized extremal g from (1) must be unique and it follows from the choices of E, μ, and B that g must also be rotation invariant. Therefore, it must be that $g(z)$ is identically equal to 1 . Hence,

$$
d_{n}=d^{n}=\delta_{n} \leqslant r^{n} .
$$

On the other hand,

$$
d_{n}=d^{n}=\delta_{n}=\inf _{B \in \mathfrak{B}_{n}} \sup _{g \in A_{q}}\|B g\| \geqslant \inf _{B \in \mathfrak{B}_{n}}\|B\|=r^{n}
$$

since it is not hard to establish that among all Blaschke products of degree n or less, $B(z)=z^{n}$ has the minimal L^{p} norm over $\{|z|=r\}$ with respect to $d \theta$. This result for d^{n} and δ_{n} when $p \leqslant q$ was obtained by O . Parfenov [Pa].

Remark. Suppose that μ is a measure on Δ whose support is not compact but nonetheless the restriction operator which maps H^{q} into $L^{p}(\mu)$ is compact. Examples of such measures are not difficult to construct. In this case, we can again ask for the values of the n-widths of the unit ball of H^{q} in L^{p}. The analysis given above (when $p<q$) carries over immediately to this more general case and, of course, the answer is exactly the same. The case $p=q$ then follows by a limit argument.

Section 2. The Case $1 \leqslant q<p \leqslant \infty$
This section has several results, most of which are examples which show that the situation when $q<p$ and \mathbf{E} is not hyperbolically small is quite different from the other case.

Example 2. Uniqueness of solutions of (1) may fail when $q<p$. To see this, take \mathbf{E} to be the circle $|z|=r$ and take $d \mu$ to be $d \theta$. If the normalized solution to (1) were unique, it would have to be $g(z) \equiv 1$ since it would be rotation invariant. Thus the value of δ would be 1 . On the other hand, if we take any $a \neq 0$ in the unit disc and set

$$
f(z)=\left[\left(1-|a|^{2}\right) /(1-a z)^{2}\right]^{1 / q}
$$

then f lies in the unit sphere of H^{q}. Hence, because $p>q$ and because f is not constant, the L^{p} norm of f on the unit circle with respect to $d \theta$ is strictly larger than 1 . Thus, the L^{p} norm of f on the circle of radius r with respect to $d \theta$ is larger than 1 , when r is near enough to 1 . This contradiction establishes that uniqueness cannot hold.

On the other hand, Osipenko and Stessin in [OS1] prove that when $q=2, p=\infty, \mathbf{E}$ is the circle of radius r, and μ is Lebesgue measure, then the Gel'fand and linear widths coincide and are equal to

$$
r^{n} /\left(1-r^{2}\right)^{1 / 2} .
$$

It is not hard to show in this case that this is in turn equal to

$$
\inf _{B \in \mathfrak{B}_{n}} \sup _{g \in A_{2}}\|B g\|_{\infty} .
$$

However, this happy coincidence of the answer for the case $q \geqslant p$ with the case $q<p$ seems to be more of an accident than a rule. We begin with the following result which is valid for all compact sets \mathbf{E}.

Theorem 2. Let \mathbf{E} be a compact set and μ a positive measure on \mathbf{E}. Then

$$
\begin{equation*}
d^{n}\left(A_{2}, L^{\infty}\right)=\delta_{n}\left(A_{2}, L^{\infty}\right)=\inf _{g_{1} \ldots, g_{n}} \sup _{z \in \mathbf{E}}\left\{1 /\left(1-|z|^{2}\right)-\sum_{j=1}^{n}\left|g_{j}(z)\right|^{2}\right\} \tag{8}
\end{equation*}
$$

where g_{1}, \ldots, g_{n} vary over all sets of n orthonormal functions in H^{2}.
Proof. For any particular set of n orthonormal functions, we note that

$$
\left\{1 /\left(1-|z|^{2}\right)-\sum_{j=1}^{n}\left|g_{j}(z)\right|^{2}\right\}=K_{s}(z, z),
$$

where $K_{S}(z, w)$ is the reproducing kernel for $w \in \Delta$ with respect to S, the orthogonal complement of the linear span of g_{1}, \ldots, g_{n}. (For each fixed $w \in A, K_{S}(\cdot, w)$ is a member of $S ; K_{S}(z, w)$ is an analytic function of z and also of \bar{w}.) To establish the lower bound for d^{n}, let S be a subspace of H^{2} of codimension n and let g_{1}, \ldots, g_{n} be an orthonormal basis for the orthogonal complement of S in H^{2}. Then for $f \in A_{2}$

$$
\begin{aligned}
\sup _{f \in S} \sup _{z \in E}|f(z)| & \geqslant \sup _{w \in E} \sup _{z \in E}\left\{\left|K_{S}(z, w)\right| / K_{S}(w, w)\right\}^{1 / 2} \\
& \geqslant \sup _{w \in E}\left\{K_{S}(w, w)\right\}^{1 / 2} .
\end{aligned}
$$

After taking the infimum over all such subspaces S, equivalently, over all orthonormal sets g_{1}, \ldots, g_{n}, this gives the lower bound. Since $|f(z)| \leqslant\left\{K_{S}(z, z)\right\}^{1 / 2}$ for all $f \in A_{2} \cap S$ and all $z \in A$, we also obtain the right-hand side of (8) as an upper bound of d^{n}.
The upper bound for δ_{n} is obtained by noting that any orthonormal set g_{1}, \ldots, g_{n} gives a rank n operator from H^{2} to L^{∞} by the simple formula

$$
\left(T_{n} f\right)(z)=\sum_{j=1}^{n} g_{j}(z) \int_{0}^{2 \pi} f \bar{g}_{j} d \theta
$$

and so

$$
\begin{aligned}
\delta_{n} \leqslant\left\|I-T_{n}\right\| & \leqslant \sup \left\{\|f\|: f \in A_{2}, \int_{0}^{2 \pi} f \bar{g}_{j} d \theta=0, j=1, \ldots, n\right\} \\
& \leqslant \sup _{z \in E}\left\{K_{S}(z, z)\right\}^{1 / 2} .
\end{aligned}
$$

With Theorem 2 proved, we consider the following example.
Example 3. We compute the Gel'fand 1 -width of the unit ball of H^{2} in $L^{\infty}(E, \mu)$ where E is the interval $[-r, r], 0<r \leqslant 1 / 2$, and $d \mu$ is $d x$. A computation establishes that

$$
\inf _{B \in \mathfrak{B}_{1}} \sup _{z \in E}|B(z)| /\left(1-|z|^{2}\right)^{1 / 2}=r /\left(1-r^{2}\right)^{1 / 2} .
$$

On the other hand, the function $g(z)=\left(1-r^{4}\right)^{1 / 2} /\left(1-r^{2} z^{2}\right)$ has H^{2} norm one and some simple calculus (here is where you use $r \leqslant 1 / 2$) shows that

$$
\sup _{z \in E}\left\{\left(1-|z|^{2}\right)^{-1}-|g(z)|^{2}\right\}<r /\left(1-r^{2}\right)^{1 / 2} .
$$

This shows that formula (5) of Theorem 1 does not always hold in the case when $q<p$.

Example 4. Even when E is the circle $|z|=r$ and $d \mu=d \theta$, formula (5) of Theorem 1 may not hold. Fix $q, 1 \leqslant q<2$, and take $p=\infty$. Let

$$
\varphi(z)=\left((1-r z)^{-1}-r z\right)^{2 / q} /\left(\left(1-r^{2}\right)^{-1}-r^{2}\right)^{1 / q}
$$

Then it is not overly hard to establish that φ lies in the unit sphere of H^{q} and that φ satisfies the integral identity for each $g \in H^{q}$

$$
\int_{0}^{2 \pi} \bar{\varphi}\left(e^{i \theta}\right)\left|\varphi\left(e^{i \theta}\right)\right|^{q-2} g\left(e^{i \theta}\right) d \theta=c_{1} g(r)+c_{2} g^{\prime}(0)
$$

where c_{1} and c_{2} are two constants. It follows from [OS2] that φ is a solution of the extremal problem

$$
\gamma:=\sup \left\{|f(r)|: f \in A_{q} \text { and } f^{\prime}(0)=0\right\}
$$

and hence $\gamma=\left(\left(1-r^{2}\right)^{-1}-r^{2}\right)^{1 / q}$. We take the subspace M of H^{q} of codimension one determined by

$$
M=\left\{f \in H^{q}: f^{\prime}(0)=0\right\}
$$

Then surely

$$
\delta_{1}\left(A_{q}, L^{\infty}\right) \leqslant \sup \left\{\|f\|_{\infty}: f \in M \cap A_{q}\right\}=\left(\left(1-r^{2}\right)^{-1}-r^{2}\right)^{1 / q}
$$

For r near enough to 1 , this last quantity is strictly smaller than $r /\left(1-r^{2}\right)^{1 / q}$ which is the value of

$$
\inf _{B \in \mathfrak{B}_{1}} \sup _{g \in A_{q}}\|B g\|_{\infty}
$$

Hence, formula (5) of Theorem 1 cannot hold here.

References

[F] S. D. Fisher, "Function Theory on Planar Domains," Wiley, New York, 1983.
[FM1] S. D. Fisher and C. A. Micchelli, The n-widths of sets of analytic functions, Duke Math. J. 47 (1980), 789-801.
[FM2] S. D. Fisher and C. A. Micchelli, Optimal sampling of holomorphic functions II, Math. Ann. 273 (1985), 131-147.
[MR] C. A. Micchelli and T. J. Rivlin, A survey of optimal recovery, in "Optimal Estimation in Approximation Theory," Plenum, New York, 1977.
[OS1] K. Yu. Osipenko and M. I. Stessin, On n-widths of the Hardy class H^{2} in the unit ball of C^{n}, Uspekhi Mat. Nauk, No. 5 (1990), 193-194; (English transl.) Russian Math. Surveys 45, No 5, 235-236.
[OS2] K. Yu. Osipenko and M. I. Stessin, On recovery problems in the Hardy and Bergman spaces, Mat. Zametki 49, No. 4 (1991), 95-104.
[Pa] O. G. Parfenov, Gel'fand widths of the unit ball of the Hardy space H^{p}, Mat. Zametki 37 (1985), 171-175. [Russian]
[Pi] A. Pinkus, " n-Widths in Approximation Theory," Springer-Verlag, Berlin, 1985.

[^0]: * Research supported in part by Grant DMS-8601901 from the National Science Foundation.

