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Let E be a compact subset of the open unit disc J and let Hq be the Hardy space
of analytic functionsf on J for which Ifl q has a harmonic majorant. We determine
the value of the Kolmogorov, Gel'fand, and linear n-widths in U(E, j1.) of the
restriction to E of the unit ball of Hq when p ~ q or when 1~ q <p < 00 and E is
"small." © 1991 Academic Press, Inc.

INTRODUCTION

Let L1 be the open unit disc in the complex plane, E a compact subset
of d, and f-l a positive measure on E. In this paper we establish the precise
value of the n-width of the unit ball of the Hardy space Hq in the space
U(E, f-l) in the case when 1~p ~ q ~ 00 and in certain cases when
1~ q <p ~ 00. These results extend results of Fisher and Micchelli for the
cases q = 00, 1~p ~ 00, and p = q = 2 (see [FMl; FM2J, respectively),
When p ~ q, E is the circle {z: Izi = r}, and J1 is restricted to a special class
of measures, the value of the width was obtained by 0, G.Parfenov [Pa],

In Section 1 we establish our notation, give all the requisite definitions,
and state and prove the main theorem, We conclude in Section 2 with
several results concerning the more difficult case when 1~ q < p ~ 00,

SECTION 1

Let X be a Banach space and A a (convex, compact, centrally sym­
metric) subset of X.

The Kolmogorov n-width of A in X is defined by

dn(A, X) := inf sup inf III-gil,
X n fEA gEXn

where X n runs over all n dimensional subspaces of X.
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The Gel'fand n-width of A in X is defined by

dn(A, X) := inf sup Ilxll,
Ln xELnnA

where L n runs over all subspaces of codimension n.
The linear n-width of A in X is defined by

Dn(A, X) :=inf sup Ilf- Tnfll,
Tn lEA

where Tn varies over all linear operators of rank n which map X into itself.
Much information on n-widths is in the book by A. Pinkus [Pi].
We shall take A to be the restriction to the compact set E of the closed

unit ball A q of the Hardy space Hq. We say that sampling is optimal for Aq
if there are points zl' ... , Zn in L1, LP functions C1, ... , Cn on E, and a linear
operator Tn of the form

n

(Tnf)(z) = L ck(z)f(zd,
k=l

such that

Dn(Aq , U)= sup Ilf- Tnfllu-
IEAq

(Repetitions among the points z1, ... , Z n are allowed with the usual under­
standing that if Zi is repeated k times, the values of f at Zi are the
consecutive derivatives off at Zi of order zero through k - 1.)

The values of the n-widths are expressed in terms of Blaschke products.
A Blaschke product of degree n is an analytic function B on L1 of the form

n

B(Z)=A n (z-aj )/(I-aj z),
j=l

We denote the collection of all Blaschke products of degree n or less by ~n.

The proof of our main theorem depends in an essential way on the
following extremal problem: for 1~p, q < 00, and a measure jl on E define

(1)

It is evident that solutions to (1) exist and that any solution is an outer
function (division by a nonconstant inner factor would not affect the Hq
norm while strictly increasing the LP(E, jl) norm). We shall call a solution
g of (1) normalized if g has Hq norm one and is positive at the origin.
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PROPOSITION 1. Let g be a normalized solution of (1). Then

bP [g(e i8W =f Ig(w)[P P(e i8
; w) dJ.l(w)

E
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(2)

for all 8, where P(e i8
; w) is the Poisson kernel for w at e i8 and b is short for

b(p, q; J.l).

Proof Let v be a real harmonic function on A which is continuous on
the closed unit disc and s a small positive or negative number. Then

where T is the unit circle {e i8
; 0:::; 8:::; 2n}. After expanding the exponential

terms and using the binomial theorem and the fact that g is a normalized
solution to (1), we obtain

1JP f [g(e i8W v(ei8
) d8

T

=f [g(w)[p v(w) dJ.l(w)
E

Since v is an arbitrary continuous function on T, this gives (2). I
We shall be able to give the n-width in the case when p:::; q or when p > q

and E is sufficiently "small" in the following sense.

DEFINITION. The hyperbolic radius of a compact set E in the unit disc
A is the infimum of all those numbers r such that there is a conformal
mapping lP of A onto L1 such that lP(E) lies inside a circle of radius r
centered at the origin.

PROPOSITION 2. Suppose that 1:::;p:::; q < 00; then there is but one nor­
malized solution of (1). Moreover, the same conclusion holds if 1:::; q <p < 00

provided that the hyperbolic radius roof E satisfies

arctan(2ro/(1- r~)) < qn/2p.
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Proof Let gland g2 be two normalized solutions of (1). Then

Igl(eiO)/g2(eiOW

= Ie Igl(W)/g2(WW Ig2(WW P(eiO; w) df.1(w)IIe Ig2(WW P(eiO; w) df.1(w).

The measure d{3(w) = Ig2(WW P(eiO; w) df.1(w)/fe Ig2(WW P(eiO; w) df.1(w) is
a probability measure so the above equality gives (for each 8)

Igl(e iO)/g2(e iOW ~ sup Igl(W)/g2(WW.
WEE

(3)

Since gl and g2 are any two normalized solutions, (3) holds with the roles
of gl and g2 interchanged. Moreover, gdg2=exp(u+iv), so that (3), and
its counterpart with gl and g2 interchanged, can be rephrased as

supu(eiO)~{p/q} supu(w)
T WEE

and

-infu(eiO)~ -{p/q} inf u(w).
T WEE

When we add these two inequalities we obtain

sup u(eiO ) - inf u(eiO )~ {p/q}{ sup u(w) - inf u(w)}. (4)
T T WEE WEE

If q;:: p, this clearly implies (by the maximum principle) that u is a
constant; that is, g 1 is a constant multiple of g2' This constant must be 1
since gland g2 are both normalized.

If q < p, then we have to work a little harder. Assume that u is not iden­
ticaly constant. Adding a constant to u and then multiplying by a positive
scalar clearly does not change (4). Hence, we may suppose that -1 ~ u ~ 1
on T and that the left-hand side of (4) is equal to 2. The following lemma
is now needed.

LEMMA. Suppose that u is a real-valued harmonic function on L1 satisfying
- 1~ u ~ 1. If the hyperbolic radius of E is r, then

sup {u(w) - u(O} ~ (4/n) arctan(2r/(I- r2)).
w,(EE

Proof Clearly the problem is conformally invariant, so there is no loss
in assuming that E lies within the disc of radius r centered at the origin. We
shall use the maximum principle and the Poisson integral formula for u:



THE n-WIDTH OF THE UNIT BALL OF Hq

sup {U(O-U(W)} ~SUp{U(O-U(W):1(1 = Iwi =r}
w,CEE

~ sup {(lj2n) f IP(e ili ; 0 - P(eili ; w)1 de: 1(1 = Iwl = r}

= (1j2n) f IP(eili;r)_P(e ili ; -r)1 de

= (4jn) arctan(2rj(1 - r2
)),
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This concludes the proof of the lemma.

We apply the conclusion of the lemma to (4 ). Thus, if
arctan(2rj( 1 - r2

)) < nqj2p, then once again we obtain a contradiction, This
establishes that u is identically constant and hence that g 1 = g 2' The proof
of uniqueness is complete. I

Our main result is this.

THEOREM 1. Suppose that 1~p ~ q < 00 or that the hyperbolic radius Yo

of E satisfies

arctan(2Yoj(1- r~)) < nqj2p.

Then

dn(A q , U) = dn(A q , U) = bn(A q , U) = inf sup IlgB11 £P. (5)
BE'll" gEA q

Moreover, sampling is optimal for A q •

Proof There is an odd continuous mapping a of the sphere s2n + 1 into
f!4n • This mapping was first used in [FM] and is simple to define: let
zo, ..., Zn be n + 1 distinct points of L1; for each n + 1-tuple W = (wo, ... , Vol,,)
of complex numbers whose moduli sum to 1, the Pick-Nevalinna theorem
guarantees that there is a unique positive scalar p and a unique Blaschke
product B of degree at most n with pB(zJ = Wi' j = 0, ..., n. (A proof of the
Pick-Nevalinna theorem can be found, for instance, in [F].) The map a is
then defined by a(w) = B.

We now use the map a and Proposition 2 to establish the lower bound.
For each Blaschke product B of degree n or less, let gB be the unique
normalized solution of (1) with respect to the measure IBI P dfl. Let T be the
mapping from the sphere s2n + 1 into A q defined by

T(X) = a(x) gcr(x)' x E s2n+ 1.

Then T is an odd mapping from the sphere s2n + 1 into A q ; further, ! is
continuous into the weak topology on Hq. In particular, the mapping r is
continuous from s2n + 1 into LP(E, fl).
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We now apply standard arguments involving Borsuk's theorem to prove
that

dn(A q , U), dn(A q , U);;:; inf sup IlgBllv.
BE!!>. gE A q

To obtain the lower bound for the Gel'fand n-width, let iI, ..., in be n con­
tinuous linear functionals on U. The mapping x 1-+ {/;(-r(x))} is continuous
and odd from s2n + 1 into en. From Borsuk's theorem we conclude that this
map has a zero; that is, that there is a BE'J3n such that ij(BgB) =0,
j = 1, ..., n. Hence,

sup{ Ilfll : ij(f) =°andfE A q };;:; IIBgBII;;:; inf sup IlgBllv.
BE!!>. gEAq

When we minimize over all choices of iI, ..., in we obtain the desired lower
bound for the Gel'fand width. The lower bound for the Kolmogorov width
is established in this way. Let X n be any n dimensional subspace of U(E, J1)
and let Y 1, ... , Yn be a basis for X n • We shall assume that p > 1; the case
p = 1 follows by a limit argument. Each function fE A q has a unique best
approximation from X n and this best approximation varies continuously
with f In particular, this is true of the functions r(x) as x varies over
s2n+l. Let the best approximation to r(x) be LCj(X)Yj' The n-tuple
{cj(x)} is a continuous, odd function ofx and hence by Brosuk's theorem,
there is a choice of x which makes all the cj simultaneously equal to zero.
That is, there is a Blaschke product Bo such that the best approximation
to BogBo from X n is zero. This then gives

sup inf Ilf-hll;;:; inf IIBogBo-hll = IIBogBoll;;:; inf IIBgB/I.
IEAq hEX. hEX. BEiJiJ.

This is the lower bound for the Kolmogorov n-width.
We shall next establish (for all p and q) the upper bound

/\(A q , U) ~ inf sup II gBllv.
BE!!>. gEAq

(6)

This will complete the proof of Theorem 1 since bn exceeds both dn and dn
(see [Pi]). To see (6) we shall use Theorem 3 of [MR]. Let B be any
Blaschke product of degree n with zeros at Z 1, ... , Zn' Using the notation of
[MR], let X = Hq, K = A q, Z = U(E, J1), Uf= the restriction of f to the
compact set E, Y = en, and 1(f) = (f(Zl)' ...,f(zn))' Let G be defined by

n

G(aj, ..., an)(z) = L: akBk(z),
k=l
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(7)

where B k is a constant multiple of the Blaschke product with zeros at Zj'

j =f k, the constant being chosen so that Bk(Zk) = 1. According to
Theorem 3 of [MR],

sup{ Ilfll LP : fE A q andf(zd = 0, k = 1, ..., n}

=infsup{llf-A(I(f))11 :fEAq },
A

where A ranges over all transformations from en into LP(E, f-l). Moreover,
G is an optimal algorithm; that is,

sup{ Ilfll LP :fE A q andf(zk) = 0, k = 1, .,., n}

= sup{ Ilf- G(I(f)) II :fE A q }.

The left-hand side of (7) is exactly

sup{IIBgll :gEA q }

while the right-hand side of (7) is surely at least as large as the linear
n-width of A q in U(E, f-l). We may now take the infimum over all Blaschke
products of degree n to obtain the desired inequality. I

EXAMPLE 1. We use Theorem 1 to determine the n-width of A q inU
when E is the circle Izi = r, df-l = dO, and q ~ p or arctan(2rj(l- r2

)) <
nqj2p. In (5) take B(z) = zn; we know that the normalized extremal g
from (1) must be unique and it follows from the choices of E, f-l, and B
that g must also be rotation invariant. Therefore, it must be that g(z) is
identically equal to 1. Hence,

On the other hand,

dn= ~ = bn= inf sup IIBgl1 ~ inf IIBII = rn
BE23n gEAq BE£8n

since it is not hard to establish that among all Blaschke products of degree
n or less, B(z) = zn has the minimal U norm over {izi = r} with respect to
dO. This result for dn and bn when p::( q was obtained by O. Parfenov [Pa].

Remark, Suppose that f-l is a measure on A whose support is not com­
pact but nonetheless the restriction operator which maps Hq into U(p) is
compact. Examples of such measures are not difficult to construct. In this
case, we can again ask for the values of the n-widths of the unit ball of Hq
in LP. The analysis given above (when p < q) carries over immediately to
this more general case and, of course, the answer is exactly the same. The
case p = q then follows by a limit argument.

640;67 /3.9
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SECTION 2. THE CASE 1~ q < p ~ 00

This section has several results, most of which are examples which show
that the situation when q <p and E is not hyperbolically small is quite
different from the other case.

EXAMPLE 2. Uniqueness of solutions of (1) may fail when q < p. To see
this, take E to be the circle Izi = r and take dp, to be de. If the normalized
solution to (1) were unique, it would have to be g(z)= 1 since it would be
rotation invariant. Thus the value of fJ would be 1. On the other hand, if
we take any a =1= 0 in the unit disc and set

then f lies in the unit sphere of Hq. Hence, because p > q and because f is
not constant, the LP norm of f on the unit circle with respect to de is
strictly larger than 1. Thus, the LP norm off on the circle of radius r with
respect to de is larger than 1, when r is near enough to 1. This contra­
diction establishes that uniqueness cannot hold.

On the other hand, Osipenko and Stessin in [OS1] prove that when
q = 2, p = 00, E is the circle of radius r, and p, is Lebesgue measure, then
the Gel'fand and linear widths coincide and are equal to

rnj(1- r2 )1/2.

It is not hard to show in this case that this is in turn equal to

inf sup IIBgll oo •
BE!Bn gEAZ

However, this happy coincidence of the answer for the case q ~ p with the
case q <p seems to be more of an accident than a rule. We begin with the
following result which is valid for all compact sets E.

THEOREM 2. Let E be a compact set and p, a positive measure on E. Then

where g l' ... , gn vary over all sets of n orthonormal functions in H 2
•

Proof For any particular set of n orthonormal functions, we note that
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where Ks(z, w) is the reproducing kernel for wELl with respect to S, the
orthogonal complement of the linear span of g1' ..., gn' (For each fixed
WELl, Ks(', w) is a member of S; Ks(z, w) is an analytic function of z and
also of Hi.) To establish the lower bound for dn

, let S be a subspace of H 2

of codimension n and let g l' ... , gn be an orthonormal basis for the
orthogonal complement of S in H 2

• Then for fE A 2

sup sup If(z)1 ~ sup sup {IKs (z, W )1/Ks (w, } 1/2
fES zEE WEE zEE

~ sup {Ks(w, W)}1/2.
WEE

After taking the infimum over all such subspaces S, equivalently, over
all orthonormal sets g1, ... , gn' this gives the lower bound. Since
If(z)1 ~ {Ks(z, Z)}1/2 for all fEA 2nS and all zEA, we also obtain the
right-hand side of (8) as an upper bound of dn

.

The upper bound for Dn is obtained by noting that any orthonormal set
g1, .;., gn gives a rank n operator from H 2 to L'X) by the simple formula

and so

~SUp{KS(Z,Z)}1/2. I
ZEE

With Theorem 2 proved, we consider the following example.

EXAMPLE 3. We compute the Gel'fand I-width of the unit ball of H 2

in LOO(E,Jl) where E is the interval [-r,r], O<r~I/2, and dJl isdx.
A computation establishes that

inf sup IB(z)l/(I-lzI 2)1/2 = r/(1- r2)1/2.
BE!!3j ZEE

On the other hand, the function g(z) = (1 - r4)1/2/(1_ r2z2) has H 2 norm
one and some simple calculus (here is where you use r ~ 1/2) shows that

sup {(1-lzI 2)-1-lg(zW} <r/(1_r2)1/2.
ZEE

This shows that formula (5) of Theorem 1 does not always hold in the case
when q<p.



356 FISHER AND STESSIN

EXAMPLE 4. Even when E is the circle Izi = rand dJl = dO, formula (5)
of Theorem 1 may not hold. Fix q, 1:::; q < 2, and take p = 00. Let

cp(z) = ((1- rz) -1 - rzf/q/((1- r2 )-1 - r2 )ljq.

Then it is not overly hard to establish that cp lies in the unit sphere of Hq
and that cp satisfies the integral identity for each g E Hq

('" q.i(eie ) Icp(e ieW- 2 g(e ie
) dO = C1 g(r) +C2 g'(O),

where C1 and C2 are two constants. It follows from [082] that cp is a
solution of the extremal problem

Y :=sup{lf(r)1 :fEAqandf'(O)=O}

and hence y=((1_r2 )-I_r2 )ljq. We take the subspace M of Hq of
codimension one determined by

M = {IE Hq :1'(0) = O}.
Then surely

For r near enough to 1, this last quantity is strictly smaller than
r/(1-r2)I/q which is the value of

inf sup II Bgil 00'

BE!!ll gEAq

Hence, formula (5) of Theorem 1 cannot hold here.
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