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Let E be a compact subset of the open unit disc 4 and let H? be the Hardy space
of analytic functions f on 4 for which | £ has a harmonic majorant. We determine
the value of the Kolmogorov, Gel'fand, and linear a-widths in L7(E, u) of the
restriction to E of the unit ball of H? when p<g or when 1<g<p<oo and E is
“small.”  © 1991 Academic Press, Inc.

INTRODUCTION

Let 4 be the open unit disc in the complex plane, E a compact subset
of 4, and u a positive measure on E. In this paper we establish the precise
value of the n-width of the unit ball of the Hardy space H? in the space
L?(E, u) in the case when I1<p<g< oo and in certain cases when
1 < g <p< . These results extend results of Fisher and Micchelli for the
cases g=oc0, 1<p< oo, and p=g=2 (see [FMI1; FM2], respectively}
When p<gq, E is the circle {z: |z] =r}, and y is restricted to a special class
of measures, the value of the width was obtained by O. G. Parfenov [PaT.

In Section 1 we establish our notation, give all the requisite definitions,
and state and prove the main theorem. We conclude in Section 2 with
several results concerning the more difficult case when 1 <g<p< .

SECTION 1

Let X be a Banach space and A a (convex, compact, centrally sym-
metric) subset of X, )
The Kolmogorov n-width of A in X is defined by

d(A, X):=inf sup inf |f—gl,

W feA 88X
where X, runs over all » dimensional subspaces of X.

* Research supported in part by Grant DMS-8601901 from the National Science Foundation.

347
0021-9045/91 $3.00

Copyright © 1991 by Academic: Press, inc.
All rights of reproduction in any form reserved.



348 FISHER AND STESSIN
The Gel’fand n-width of A in X is defined by

d*(A, X):=inf sup |x|,

L' xel"nA

where L” runs over all subspaces of codimension #.
The linear n-width of A in X is defined by

0,(A, X) :=inf sup | f—T, f,

T, feA

where T, varies over all linear operators of rank » which map X into itself.

Much information on n-widths is in the book by A. Pinkus [Pi].

We shall take A to be the restriction to the compact set E of the closed
unit ball 4, of the Hardy space H?. We say that sampling is optimal for 4,
if there are points z,, .., z, in 4, L? functions ¢y, .., ¢, on E, and a linear
operator T, of the form

n

(T, /)2 =Y el2) f(z), feH*

k=1

such that

0,(Ag, L) =sup | f—T,fl .-

fe Ay

(Repetitions among the points z,, ..., z, are allowed with the usual under-
standing that if z; is repeated k times, the values of f at z, are the
consecutive derivatives of f at z; of order zero through k—1.)

The values of the n-widths are expressed in terms of Blaschke products.
A Blaschke product of degree n is an analytic function B on 4 of the form

B(z):/lﬁ(z—aj)/(l—ﬁjz), ay,.mayed, =1

j=1

We denote the collection of ail Blaschke products of degree # or less by B,,.
The proof of our main theorem depends in an essential way on the
following extremal problem: for 1 <p, ¢ < c0, and a measure u on E define

o(p, q; 1) := Sup{”g”LP(E,y)/“g"H‘i:gEHq}' (1)

It is evident that solutions to (1) exist and that any solution is an outer
function (division by a nonconstant inner factor would not affect the HY
norm while strictly increasing the L7(E, u) norm). We shall call a solution
g of (1) normalized if g has H? norm one and is positive at the origin.
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PrOPOSITION 1. Let g be a normalized solution of (1). Then

07 18" =] 1g()1? P(e"s w) du(w) (2)
for all 6, where P(e; w) is the Poisson kernel for w at ¢* and § is short for
o(p, q; 1.

Proof. Let v be a real harmonic function on 4 which is continuous on
the closed unit disc and ¢ a small positive or negative number. Then

1/q 1/p
63[ 1g1emap =4[ 117 e d
T E

where T is the unit circle {¢”: 0 <6< 2n}. After expanding the exponential
terms and using the binomial theorem and the fact that g is a normalized
solution to (1), we obtain

51’J |g(e®)|9 v(e®) db
= | 1g()17 o(w) dut)
= | 1s09)17 | o(e®)P(e”; w) b dutw)

= [ v(e?) [ 180017 P(e"; w) du(w) db.

T E

Since v is an arbitrary continuous function on 7, this gives (2). §

We shall be able to give the n-width in the case when p< g or when p>g¢
and E is sufficiently “small” in the following sense.

DeriNtTioN.  The hyperbolic radius of a compact set E in the unit disc
4 is the infimum of all those numbers r such that there is a conformal
mapping @ of 4 onto 4 such that &(E) lies inside a circle of radius r
centered at the origin.

PROPOSITION 2. Suppose that 1 < p< q<o0; then there is but one nor-
malized solution of (1). Moreover, the same conciusion holds if 1 <g<p< o
provided that the hyperbolic radius ry of E satisfies

arctan(2r, /(1 —r2)) < gn/2p.
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Proof. Let g, and g, be two normalized solutions of (1). Then

|81(e”)/g2(e”)]
= [, 18100V st0I” s)1” PCe® ) o) ] 10017 P& ) it

The measure df(w) = | g,(w)|” P(e”; w) du(w)/[ g | 82(w)|” P(e”; w) du(w) is
a probability measure so the above equality gives (for each 8)

|g1(e”)/g2(e”)|? < sup [ g,(w)/g>(w)]”. 3)

wekFE

Since g, and g, are any two normalized solutions, (3) holds with the roles
of g, and g, interchanged. Moreover, g,/g,=exp(u + iv), so that (3), and
its counterpart with g, and g, interchanged, can be rephrased as

sup u(e®) < {p/q} sup u(w)

wekE

and

—infu(e®) < —{p/q} inf u(w).
T wekE
When we add these two inequalities we obtain

sup u(e”) —inf u(e®) < { p/q} {sup u(w)— inf u(w)}. 4)
T T wekE weFE
If g=p, this clearly implies (by the maximum principle) that u is a
constant; that is, g, is a constant multiple of g,. This constant must be 1
since g, and g, are both normalized.

If g < p, then we have to work a little harder. Assume that « is not iden-
ticaly constant. Adding a constant to u and then multiplying by a positive
scalar clearly does not change (4). Hence, we may suppose that —1 <u<1
on T and that the left-hand side of (4) is equal to 2. The following lemma
is now needed.

LEMMA. Suppose that u is a real-valued harmonic function on A satisfying
—1<u< 1. If the hyperbolic radius of E is r, then

sup {u(w)—u({)} < (4/r) arctan(2r/(1 —r?)).

w,{eE

Proof. Clearly the problem is conformally invariant, so there is no loss
in assuming that E lies within the disc of radius r centered at the origin. We
shall use the maximum principle and the Poisson integral formula for u:
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sup {u({)—u(w)} <sup{u(()—u(w): |{| =|w|=r}

w,{e E

<sup {(1/25) [ 1P(e%: )~ P(e®s )| db 1 = vl =

= (1/27) [ | P(e" r) = P(e"; —r)| db

= (4/r) arctan(2r/(1 — r?)).
This concludes the proof of the lemma.

We apply the conclusion of the lemma to (4). Thus, if
arctan(2r/(1 —r*)) < ng/2p, then once again we obtain a contradiction. This
establishes that u is identically constant and hence that g, =g,. The proof
of uniqueness is complete. J

Our main result is this.

THEOREM 1. Suppose that 1 <p < g < oo or that the hyperbolic radius r,
of E satisfies
arctan(2ry/(1 —r2)) < mng/2p.
Then
d(A,, L7)=d"(4,, L")=6,4,, L”)= inf sup |gB| ... (5}

Be®B, ge Ay
Moreover, sampling is optimal for 4,.

Proof. There is an odd continuous mapping ¢ of the sphere S***! into
%,. This mapping was first used in [FM] and is simple to define: let
Zg, s Z, D€ n+ 1 distinct points of 4; for each n+ 1-tuple w=(w,, ..., w,)
of complex numbers whose moduli sum to 1, the Pick—Nevalinna theorem
guarantees that there is a unique positive scalar p and a unique Blaschke
product B of degree at most n with pB(z;)=w,, j=0, .., n. (A proof of the
Pick—Nevalinna theorem can be found, for instance, in [F].) The map ¢ is
then defined by o(w)=B.

We now use the map ¢ and Proposition 2 to establish the lower bound.
For each Blaschke product B of degree »n or less, let gz be the unique
normalized solution of (1) with respect to the measure |B|” du. Let 7 be the
mapping from the sphere $>**! into A4, defined by

T(X) = 0(X) ux)> xe 85+,
Then 7 is an odd mapping from the sphere $*"*! into A,; further, t is

continuous into the weak topology on H? In particular, the mapping 7 is
continuous from S?"*! into LP(E, u).
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We now apply standard arguments involving Borsuk’s theorem to prove
that

d"(A,, L?), d,(4,, [?)> inf sup |gB| .

BeB, ged,

To obtain the lower bound for the Gel'fand »n-width, let /,, ..., [, be n con-
tinuous linear functionals on L?. The mapping x — {/;(t(x))} is continuous
and odd from $?"*! into C". From Borsuk’s theorem we conclude that this
map has a zero; that is, that there is a Be®B, such that /;(Bgz)=0,
Jj=1, .., n. Hence,

sup{|lfll : [;(f)=0andfe A} >|Bg;| > inf sup |gB]..

Be®B, gedy

When we minimize over all choices of /i, ..., /, we obtain the desired lower
bound for the Gel’fand width. The lower bound for the Kolmogorov width
is established in this way. Let X, be any » dimensional subspace of L?(E, p)
and let y,, .., y, be a basis for X,. We shall assume that p>1; the case
p=1 follows by a limit argument. Each function fe 4, has a unique best
approximation from X, and this best approximation varies continuously
with f. In particular, this is true of the functions z(x) as x varies over
S?7*+1 Let the best approximation to 7(x) be X ¢;(x)y,. The n-tuple
{¢;(x)} is a continuous, odd function of x and hence by Brosuk’s theorem,
there is a choice of x which makes all the ¢, simultaneously equal to zero.
That is, there is a Blaschke product B, such that the best approximation
to By g, from X, is zero. This then gives

sup inf | f—h| > inf [|Bygyg—hl=I1Bogsll = inf |Bggll.

fed, heXy he X, Be %,

This is the lower bound for the Kolmogorov n-width.
We shall next establish (for all p and gq) the upper bound

0,(A,, LP)< inf sup | gBll . (6)
Be®B, gedy
This will complete the proof of Theorem 1 since §, exceeds both d” and d,
(see [Pi]). To see (6) we shall use Theorem 3 of [MR]. Let B be any
Blaschke product of degree n with zeros at z, ..., z,,. Using the notation of
[MR], let X=HY K=A,, Z=L(E, u), Uf=the restriction of f to the
compact set E, Y=C", and I(f) = (f(z,), .., f{(z,)). Let G be defined by

n

G(ala ey an)(z) = Z akBk(Z)s (ala ey an)e Cn’

k=1
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where B, is a constant multiple of the Blaschke product with zeros at z;,
j#k, the constant being chosen so that B, (z,)=1. According to
Theorem 3 of [MR],

sup{||fll: fed,and f(z)=0,k=1, .., n}
=igfsup{1|f—/1(1(f))i| :fed,),

where A ranges over all transformations from C” into L?(E, u). Moreover,
G is an optimal algorithm; that is,

sup{|fl:fed,and f(z,)=0,k=1,..,n}
=sup{|/—GU(N) :fed,}
The left-hand side of (7) is exactly

s,
~J
R—

sup{||Bgll :g€ 4,}

while the right-hand side of (7) is surely at least as large as the linear
n-width of 4, in L?(E, u). We may now take the infimum over all Blaschke
products of degree n to obtain the desired inequality. §

ExampLE 1. We use Theorem 1 to determine the n-width of 4, in L7
when E is the circle |z|=r, du=d0, and ¢=p or arctan(2r/(1 —r*)) <
ng/2p. In (5) take B(z)=z"; we know that the normalized extremal g
from (1) must be unique and it follows from the choices of E, u, and B
that g must also be rotation invariant. Therefore,; it must be that g(z) is
identically equal to 1. Hence,

d,=d"=5,<r"

n n

On the other hand,
d,=d"=5,= inf sup |Bg|> inf [B|=r"

Be®B, gedy BeB,

since it is not hard to establish that among all Blaschke products of degree
n or less, B(z) =z" has the minimal L? norm over {|z| =r} with respect to
df. This result for 4" and §, when p < ¢ was obtained by O. Parfenov [Pa].

Remark. Suppose that p is a measure on 4 whose support is not com-
pact but nonetheless the restriction operator which maps H? into L?{u) is
compact. Examples of such measures are not difficult to construct. In this
case, we can again ask for the values of the n-widths of the unit ball of H?
in L?. The analysis given above {when p < g) carries over immediately to
this more general case and, of course, the answer is exactly the same. The
case p = q then follows by a limit argument.

640/67/3-9
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SEcTiON 2. THE CASE I1<g<p<

This section has several results, most of which are examples which show
that the situation when ¢ <p and E is not hyperbolically small is quite
different from the other case.

ExaMPLE 2. Uniqueness of solutions of (1) may fail when g <p. To see
this, take E to be the circle |z| =r and take du to be df. If the normalized
solution to (1) were unique, it would have to be g(z)=1 since it would be
rotation invariant. Thus the value of 6 would be 1. On the other hand, if
we take any a # 0 in the unit disc and set

f2)=[(—lal®/(1—az)*]"

then £ lies in the unit sphere of HY Hence, because p > ¢ and because f is
not constant, the L” norm of f on the unit circle with respect to df is
strictly larger than 1. Thus, the L” norm of f on the circle of radius r with
respect to df is larger than 1, when r is near enough to 1. This contra-
diction establishes that uniqueness cannot hold.

On the other hand, Osipenko and Stessin in [OS1] prove that when
g=2, p=oo, E is the circle of radius r, and u is Lebesgue measure, then
the Gel'fand and linear widths coincide and are equal to

/(1 — 32,
It is not hard to show in this case that this is in turn equal to

inf sup ||Bg| .

Be®B, ge A

However, this happy coincidence of the answer for the case ¢ = p with the
case g <p seems to be more of an accident than a rule. We begin with the
following result which is valid for all compact sets E.

THEOREM 2. Let E be a compact set and u a positive measure on E. Then

(A, L) =6,(Ay) L=) = inf sup{l/(l—IZIz)—

g1, 8 2€E

5 lg,-(z)P} ®)
o1

Je
where g, .., &, vary over all sets of n orthonormal functions in H>.
Proof. For any particular set of n orthonormal functions, we note that

fi-1)- 3 1@ = Kota. ),
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where Kg(z, w) is the reproducing kernel for we 4 with respect to S, the
orthogonal complement of the linear span of gy, .., g,. (For each fixed
wed, K (-, w)yis a member of S; K¢(z, w) is an analytic function of z and
also of #.) To establish the lower bound for d", let S be a subspace of H?
of codimension n and let g, .., g, be an orthonormal basis for the
orthogonal complement of S in H2 Then for fe 4,

sup sup |f(z)] = sup sup {|Ks(z, w)I/Ks(w, w)}'?

fesS zeE weE zekE

> sup {Ks(w, w)} "%

weE

After taking the infimum over all such subspaces S, equivalently, over
all orthonormal sets g,,.., g,, this gives the lower bouand. Since
1f(2)] < {Ks(z, z)}'? for all fe A, S and all ze 4, we also obtain the
right-hand side of (8) as an upper bound of 4”.

The upper bound for §, is obtained by noting that any orthonormal set
g1, - &, gives a rank n operator from H? to L™ by the simple formula

(T.N)E)= 3 )] 1gds

and so

2r ]
,< =T, <sup {11 s fe s, | g d=0.j=1.un}

<sup {Ks(z.2)}' 1

ze £

With Theorem 2 proved, we consider the foliowing exampile.

ExAMPLE 3. We compute the Gel'fand 1-width of the unit ball of H?
in L®(E, u) where E is the interval [ —#,r], O<r<1/2, and du is dx.
A computation establishes that

inf sup |B(z)|/(1—|z1*)"=r/(1 — ).

BeBy zeFE

On the other hand, the function g(z) = (1 —r*)?/(1 — r*z?) has H? norm
one and some simple calculus (here is where you use r < 1/2) shows that

sup {(1~|z1%)~" = g(@)I*} <r/(1—r*)"2

ze E

This shows that formula (5) of Theorem ! does not always hold in the case
when g <p.
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ExampLE 4. Even when E is the circle |z| =r and du = df, formula (5)
of Theorem 1 may not hold. Fix ¢, 1 <¢g <2, and take p=c0. Let

o(z2)=((1—rz) ™ —rz)9(1 —r*) ' =124,

Then it is not overly hard to establish that ¢ lies in the unit sphere of H?
and that ¢ satisfies the integral identity for each ge H?

f: " 3(e) 19(e”)]* 2 g(e®) db=c, g(r) + 2 0)

where ¢, and ¢, are two constants. It follows from [OS2] that ¢ is a
solution of the extremal problem

y :=sup{|f(r)| : fe 4,and f'(0)=0}

and hence y=((1—r?)"'—+*)"4. We take the subspace M of H? of
codimension one determined by

M={feH?:f'(0)=0}.
Then surely

01(dg, L) <sup{|l fllw :feMn A} =((1—r?) 1 =17

For r near enough to 1, this last quantity is strictly smaller than
r/(1 —r*)"4 which is the value of

inf sup ||Bg| »-

Be®B; ged,

Hence, formula (5) of Theorem 1 cannot hold here.
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